./ thebaldgeek.github.10

View on GitHub

Iridium ACARS Decoding.

Navigation: home

There is a solid amount of ACARS messages being sent via the
Iridium satellite constellation.

To set expectations right up front, there are no position reports,
so no chance of plotting pixels on a map, also the way Iridium
works, routing messages between satellites in LEO to the nearest
satellite that can ‘see’ a ground station (gateways are located in
Tempe, Arizona (USA) Fairbanks, Alaska (USA) Svalbard, Norway
(Europe) Punta Arenas, Chile (South America)), you often only get
a fragment of the ACARS message. And voice? Very delayed, very
time consuming, very CPU intensive for just a few seconds of a
random unknown call audio (ie, more than just aircraft voice calls
are carried by Iridium, so you cant just decode aircraft calls),
so we are not even going to discuss it.

Currently there are a solid number of avgeek ground stations
scattered around mainland USA and a few around Europe / UK which
when combined are seeing around 24,000 Iridium ACARS messages a
day.




In Feb 2022 we started Tooking at it seriously, so all this is
very new and thus a bit rough around the edges, but here are some
tips to get you started. If you want to get technical, this doc is
a good read.

Sep 2022 Iridium has picked up a LOT of interest in the past few
weeks with some very interesting posts on the ACARS groups.io
email list. Seems that a good amount of military aircraft (All
USAF KC-135) are going to be moving from Inmarsat L-Band to
Iridium.

Parts required to build an Iridium ground
station

Antenna

I started out using the RTLSDR v2 patch antenna since its only meh
at Inmarsat and so I had an unused one kicking around. while not
the best antenna for Iridium (its directional and has a sAw filter
in the LNA), its really not too bad given it’s price and
availability, if its all you can get, then give it a go by
mounting it outside, looking straight up ie, flat, or angled in
any direction that does not have obstructions (trees etc).

Some people have hand built themselves a RHCP L-Band patch
antenna, since it has less forward gain, the home made ones are an
option if you are so inclined.

I jumped on eBay and picked up a combined GPS and iridium dome
antenna and will report back on how it goes once we get some air
time with it.

Do note that there are very few active (built in LNA) Iridium
antennas since transmitting up to the satellites is very common.




That said, I have found one that I really like: HC610. (There is
also a passive version of this antenna, so that might be an easier
to find and buy than this active one). Note that the HC610 has
some nice out of band filters to help cut down on the very busy L-
Band crud we are not wanting to hear.

This is the view of the bottom of the antenna. Note the male
connector.

This helix is very small, should be able to mount it outside 1in
the clear view of the 360 deg sky very easily.




i’ R
Mounted next to my GPS (galmon) antenna. Note that the L-Band
patch is looking at the 54w Inmarsat, not Iridium.
If you are using an active antenna or LNA be sure and enable the
Bias-T on your SDR via its config file, or use a physical Bias-T
power injector (which is what I do because I am testing a lot of
different SDRs and they all are a pain to turn the bias-T on 1in
the config file - some don’t even support Bias-T - some (RSPla)

only supply 10’s of milliamps via the Bias-T and depending on your
LNA you might have issues supplying enough power.).

Bottom line, L-band RHCP omni directorial antenna with a clear
view of the sky, good LNA and good quality coax is required.

LNA

There are a few wide band amplifiers that cover 1.6Ghz, but the
Nooelec Iridium+IR LNA has amazing performance. well worth the
money and Bias-T hassels to drive this amplifier.

At a quick glance, you may assume that there are a few NooElects
that seem to cover this band, they don’t all cover the full range
of Iridium frequencies. Nooelec have a really helpful page on
their SAwbird LNA range, take some time to read it before making
your purchase. Here is a tip, Iridium is really loud. You may not
need the extra gain of the + LNA. Also note that the + draws an
extra 150mA. So for example, if you are using an RSPla SDR, its
Bias-T can only supply 50mA, so the base SAwbird LNA is (should be
- might be) fine at 30mA draw, the + at 180mA will not work. In
the case of Iridium, the extra 10db gain 1is probably not needed so
this combo would work fine depending on your antenna, coax quality
and Tength. (of course, once again, to really press this home, you




can just use a physical Bias-T and not have to worry about any of
this).

SDR

I normally 1like the RTLSDR v3 for this sort of thing (all things
ACARS and L-Band). Its very affordable and very quick and clean to
get running. The problem with the RTLSDR 1is that it only covers
around 2Mhz bandwidth and that is only a very small number of the
Iridium data channels.

I am testing the LimeSDR Mini vl (10mhzBwW), RSPla (9mhzBW) Airspy
R2 (10mhzBW), Airspy Mini (6mhzBW) and HackRF (10MhzBW) and am
getting good numbers from most of these, easily more than 4x the
data from the RTLSDR due to all of them covering more bandwidth of
various amounts.

The RSPla would be a viable option if not for the rather unstable
API Linux driver they ship. It is very CPU intense (wasteful) and
as I said, somewhat crash prone. (This is not just an gr-iridium
issue, those using the RSPla on dumphfdl have the exact same
issue). The hardware is great, the Linux software is lacking.
There currently no wWindows Iridium decoders that I know of. (No
idea about Mac).

If you follow my Twitter (sorry), you might have seen a month long
thread about if the Airspy R2 really can cover the full 10Mhz
bandwidth required by Iridium and October 24th 2022, we have an
answer. Yes!

In the airspy.conf file simply change the center frequency, set
the sample rate to 10 and the bandwidth to 10 and connect the R2
to a USB 3.0 port and you will get all the Iridium data there is
to get (assuming your CPU can keep up).

To be clear. we don’t actually know for sure if you require a
10Mhz bandwidth SDR or not. It seems that there is no ACARS in the
top bit and so an 8Mhz might be Ok. But, we do KNOw for sure that
you need a computer to drive it to get all the data channels on
Iridium. (Do note that the Raspberry Pi 4 is just not powerful
enough for Iridium). Most bleeding edge stations are running 10meg
to see whats out there in this new mode.

Software. MUCCC - iridium-toolkit and gr-iridium

If you want to build from source the repo can be found on the
Chaos Computer Club Minchen GitHub. I really don’t recommend
building from source, gnu-radio is not trivial to build and nor is
the gr-iridium toolkit. Ubuntu 22 is getting a bit better with




gnuradio being in the repo, but there are still some hopes to jump
through to get all the pieces and parts working together from what
I am told - I simply use DragonOS_FocalX where its all plug and

play.

Note that none of the Iridium tools use a gui, so you must run it
all via the desktop shell terminal on the Dragon0S computer (or
via PUTTY with Dragon0S). I did my testing on a VMware instance on
my Windows PC since you need USB 3.0 and plenty of CPU power to
drive your SDR to the required 10Mhz BwW and decode all the burst
data.

Computer - CPU power is critical

The decoding of such a wide bandwidth of such bursty data is very
CPU 1intense. You will need a USB 3.0 port to pass the data
smoothly (USB 2.0 1is a bit of a bottle neck).

For starters, the Raspberry Pi4 does NOT have enough power to
decode more than about 2mhz, ie, the output of the RTLSDR v3. So
yes, you can get started and see a few messages, but you will be
missing out on over 80% of the aircraft in your area and you will
have to chose between getting ACARS and seeing your map coverage,
one or the other, the Pi4 and RTLSDR v3 canh not decode both. (Look
down this page a bit to see why, the map data is at one end and
ACARS data at the other end of the 10Mhz spread).

Oour KBOS station is running: i3-12100 CPU, H670 chipset. That
seems to be doing the job very well. A few other stations are
running the Beelink NUC clones and seem to be very happy reporting
good decode rates.

A few other stations are using old laptops, i5, i7 and are working
well. One reported his very old 17 could not keep up and he had to
upgrade the system he ran the Iridium code on.

RAM is not critical, around 2mb or more is enough. HDD space
requires a minimum of 32GB for DragonOS_Focal.

Personally I am running DragonOS_Focal on a vMware player machine
on my Windows PC and am very happy.

You will know if your CPU is up to the task based on how many
dropped frames you see. Roughly the make/break is to have a
‘ok_ave’ of more than 70%.

Getting Started

once you install DragonOS_FocalX on an i5 or better x86 computer
with a USB 3.0 port, you are ready to start.




For now you are going to open a few terminals, we are working on
an script to run it and keep it running (it does crash now and
then), but for now, this is the best way to get going....

This guide assumes that you would like to share your Iridium data
with the world and thus send it to thebaldgeek so it can be added
to the main Iridium page and more. You can also open another
terminal and use the same process to send data to yourself on
another UDP port number in another terminal.

Here is the big picture, we are going to make a python file
(acars.py) that will take the output from the Iridium decoder and
send it via UDP to my 1ingest server. You will have one terminal to
parse the raw data and another terminal to decode the ACARS
messages and to send the data to my site. (Optionally, there is a
third terminal for your local map if you would Tike to see your
coverage) .

Lots of terminals

Terminal One

Run the extractor from any directory: (This assumes you are
testing with an RTL-SDR V3, change the .conf file to match your
SDR and edit it to turn on the Bias-T if required).
iridium-extractor -D 4 --multi-frame /usr/src/gr-iridium/examples/rtl-
sdr.conf | python3 -u /usr/src/iridium-toolkit/iridium-parser.py -o zmq
To be clear, if you not using an RTLSDR look in the /usr/src/gr-
iridium/examples/ directory and find your SDR and tweak that file
to best set it up.

You are going to get a line of data per second:

1666645162 | i: 351/s | i_avg: 392/s | q_max: 24 | i_ok: 79% | o: 751/s |
ok: 82% | ok: 291/s | ok_avg: 85% | ok: 31170861 | ok_avg: 334/s | d:
8260

See the MUCCC GitHub page 1linked above for a full breakdown on
each of these values and their meaning.

You want to see 60% to 100% in the ok ave: part. Lower number means
more bad packets and you need to fix your antenna, coax, LNA or
gain 1in the .conf file.

You will spend a fair bit of time looking at these numbers scroll
past as you set up and tune your station. The key value to tweak
is the gain. Try both higher and lower, but max may not be the




best out the gate. Test each gain change over at least 1 hour to
give time for few satellites to pass over your station location.

Terminal Two

Type nano acars.py, then copy/paste in this text:

#!/usr/bin/env python3

import sys
import select
import time
import socket

ap ("thebaldgeek.net", 123456)
sk = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM)
def sendOverUdp(line):
try:
bytes = str.encode(line)
print(len(bytes))
if len(bytes) < 65300 :
sk.sendto(bytes, ap)
except Exception as e:
print(e)

def no_input():
print('no input')

while True:
line = sys.stdin.readline()
if line:
sendOverUdp(line)
else:
time.sleep(1)
else:
no_input()

Change the thebaldgeek.net to what ever host you want to send your
UDP ACARS messages to, and also change the port number from 123456
to the port you are using or thebaldgeek gives you. Then save and
exit nano.

Next run this command:




python3 -u /usr/src/iridium-toolkit/reassembler.py -m acars zmq: ﬂ

tu/acars.py (Swap out ‘ubuntu’ for your username).
Do note that nothing will show in this terminal until you pickup
your first ACARS message. Depending on how much Iridium aircraft
there are in your area, it could take a moment or a few minutes,
then a single number will show up, you will see a number for every
message. The number 1is the size of the ACARS message once 1its
decoded.

Terminal Two point Five

if you want to see your ACARS messages stream past, then open
another terminal and just connect without the pipe to the
acars.py, like this....

python3 -u /usr/src/iridium-toolkit/reassembler.py -m acars zmq:
Terminal Three - Your local map.

Now, we need to get the map running: (This 1is optional, but cool
to see)

cd /usr/src/iridium-toolkit/html

sudo nano example.sh

on the second bottom Tine, if not already done, add a 3 at the end
of the word python and be sure and change the IP address for your
PC (your PC might not be 192.168.1.122), so it should read python3
-m http.server --bind 192.168.1.22 8888

Save and exit nano

In the terminal run the example file: sudo ./example.sh

At this point, you can visit your PC’s IP address from any browser
on your network and look for the map, so in my case
http://192.168.1.122:8888/map.html

Let that run. You should see the sats and beams update around once
a minute.

The Fun Part

Now that you have a UDP stream of ACARS messages you can perhaps
use Node-RED to view them, or save them to your hard drive to view
with your text filter software / application.

Very soon airframes.io will start ingesting Iridium data and when
that happens you will be part of a global system using this very
challenging mode.




Speaking of ‘fun’, it seems that once again and aircraft builders
are tormenting AVGEEKS the world over as they use different
ICAO/Rego/ModeS combos in their messages to identify their
aircraft.

thebaldgeek is keeping a Tist of unknown aircraft and if you 1like
tracking down those sorts of things, everyone would love your help
to figure out the ones in the table. Once they are ‘known’, their
Iridium ‘code’ 1is put in a CSV file and used site wide for
identifying the aircraft no mater what mode they show up on.

At the moment, ADSBEXx does not include these..aaahhh.. ‘special’
codes, so acars.adsbexchange is the only place these Iridium
aircraft are decoded and put into tables / database.

thebaldgeek 1is sharing these codes with the airframes.io guys as
he does not want to be a data island and wants to share all the
information he can so more people can benefit.

Simplex Frequency Allocation
Channel Number Center Frequency(MHz) Allocation
1626.020833 Guard Channel

1626.062500 Guard Channel

1626.104167 Quaternary Messaging

1626.145833 Tertiary Messaging

1626.187500 Guard Channel
1626.229167 Guard cChannel
1626.270833 Ring Alert
1626.312500 Guard cChannel
1626.354167 Guard Channel
1626.395833 Secondary Messaging
1626.437500 Primary Messaging

1626.479167 Guard cChannel

Duplex Channel Band




Sub-band Lower Edge (MHz) Upper Edge (MHZz)

.000000 1616.333333
.333333 1616.666667
.666667 1617.000000
.000000 1617.333333
=333335 1617.666667
.666667 1618.000000
.000000 1618.333333
2335333 1618.666667
.666667 1619.000000
.000000 1619.333333
333333 1619.666667
.666667 1620.000000
.000000 1620.333333
.333333 1620.666667
.666667 1621.000000
.000000 1621.333333
.333333 1621.666667
.666667 1622.000000
.000000 1622.333333
-333333 1622.666667
.666667 1623.000000
.000000 1623.333333
2333333 1623.666667
.666667 1624.000000
.000000 1624.333333
.333333 1624.666667
.666667 1625.000000




28 1625.000000 1625.333333
29 1625.333333 1625.666667
30 1625.666667 1626.000000

Stop reading here, the notes below are mostly wrong and are just
for history.

Note that I used to run a global Iridium coverage map, but the URL
was getting ‘attacked’ to try and break into my network, so I took
it down. If there is enough interest from the handful of Iridium
feeders, I can put it back up and just let a few people know about
T

Sep 2022. Its back!

Terminal Four - Sending me your map data.

Almost there: DM on Twitter / Discord or email me and ask for the
map2.py script that will allow you to send your local map data to
the global map. (URL only for Iridium feeder sharers).

Next run this command:

changed/archive/master.zip

This will install a python script that will Took for changes to a
file. Now go to where it was installed:

cd /home/ubuntu/.local/bin

Now run the file watch which will send me your sats.json rougly
once a minute and your coverage will be added to the master map on
my site:

./when-changed /usr/src/iridium-toolkit/html/sats.json cat

/usr/src/iridium-toolkit/html/sats.json | python3 ~/map2.py

Really really stop reading now.

Getting the lastest version

cd ~ wget https://github.com/muccc/iridium-
toolkit/archive/refs/heads/master.zip unzip master.zip

Now path to where that unzipped ie, /home/yourusername/iridium-
toolkit-master/

Pipe and tee




We are going to pipe the data into Node-RED via UDP.

To do this, we need a way to get the stdout data into a UDP
stream, we will use the iridiumlive python code to do that.

Pull the code down from the github and save it in a file (or just
cut paste it into a nano editor).

Change the IP address in the code to match your Node-RED computer
and pick a different port, but note the number.

I strongly suggest putting the port number in the file name you
save as you may end up using a few of these files to move data
around (I have three).

My files are iudp55667.py and iudp66778.py Obviously, the port
number is the same in the python code as the file name and the
same number is used in the Node-RED UDP in node.

You will need to chmod the files to make them executable.

we can dump everything at once into Node-RED, but its a firehose,
so lets just get ACARS going for a start.

iridium-extractor -D 4 --multi-frame rtl-sdr.conf | python3 -u ./iridium

You can see we are piping the data from each application to the
next. The -u tells python to unbuffer the data. Note you may or
may not have to call out ‘python3’ depending on what versions of
python you have installed on your Pi, I have both v2 and v3, so
need to call out which to use (you must use v3 for the iridium-
toolkit).

Now on the Node-RED end, you can put your UDP in node and a debug
node and after a few minutes you should see your first Iridium
ACARS message pop up.

If you want to see short burst data messages, in the command
above, swap -m acars for -m sbhd You will see more sbd messages than
ACARS, so that might be a good sanity check.

what if you want both on different streams? Use a tee.

iridium-extractor -D 4 --multi-frame rtl-sdr.conf | python3 -u ./iridium

Now add a second UDP in node and a second debug in the Node-RED
editor and you will have ACARS on port 55667 and sbd on port
66778.

How about three feeds. One to IridiumLive, one to ACARS and one to
sbhd...




sudo iridium-extractor -D 4 --multi-frame ~/iridium-toolkit-master/rtl-s

If you get sick of seeing the status message scrolling up the page
in the terminal, you can send it to null Tike this:

iridium-extractor -D 4 --multi-frame rtl-sdr.conf 2>/dev/null | python3

Now you just get the UDP count of real messages.




