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Chapter 4 Fourier Optics

- Based on harmonic analysis (Fourier transform) and liner system
(superposition).
- An arbitrary function

f(x,y)= T]F(vx v,)exp[—j2z(v.x+v y)ldv.dv,

—oo0—00

— Superposition, or integral of harmonic functions of x and y.
F,,v,): Complex amplitude

V.V, Spatial frequency (cycles/unit length)

flx, ¥)

Figure 4.0-2 An arbitrary function f(x, y) may be analyzed as a sum of harmonic functions of
different spatial frequencies and complex amplitudes.

- Compare this with plane wave
U(x,y,z) = Aexp[—j(k.x+k,y +k.z)]

U(x,y,0) = Aexp[-j27n(v x+V )]

k/ k/
V. & o v, & yzﬂ

- An arbitrary function can be analyzed as a superposition of harmonic functions.
— An arbitrary traveling wave U(x, y,z) may be analyzed as a sum of plane
waves!

4.1 Propagation of Light in Free Space
A. Correspondence Between the Spatial Harmonic Function and the Plane Wave

Plane

i \\\/

flx,y)

Fi ; :
0?11;"“6 4.1-? A harmonic function of spatial frequencies v, and v, at the plane z =0 is
1Stent with a plane wave traveling at angles 6, =sin"!Av, and 0, =sin"! Ay
. oo

e
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6. =sin”' (k% ) =sin” (Av,)
0, = sin”' (k%j =sin™ (4v,)

A physical way of picturing the spatial harmonic function is to project a plane
wave on the x-y plane.

— 6. = sin_l(%x ), 6, = sin‘l(%yj

Paraxial approximation:

6, =%x =Av,, 6,= ﬂAy =Av, (4.1-2)

4.1-1)

Spatial spectral analysis
(Response of a plane wave after a thin optical element.)
Consider a simple case:
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Figure 4.1-2 A thin element whose amplitude transmittance is a harmonic function of {platial
frequency v, (period A, = 1/».) bends a plane wave of wavelength A by an angle 8, = sin Ay
=sin" (A /A ).

t(x,y) = exp[~j2n(v.x+Vv,y)]
—  Harmonic function on x-y plane with period A = % A, = % .
x y

U(x,y,z) = Aexp[-j27n(v x +V y)]exp(-jk. z)
—  Output wave is bent with angles 6, =sin™'(4v,), 6, =sin™'(1v,).

The harmonic function pattern works like a grating.
Now consider a general case:

t(x,y) = [[Fv,,v,)exp[-j2zW x+v,y)]dv.dv, (4.1-4)
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U(x,y,2)= [[F(v,,v,)exp[—j27W x+V,y)]exp(—jk,z)dv dv,

5 3 s 1 1 1
kZ: kz—kj—ki =2 ?—?—?

—  An incident plane wave is decomposed into many plane waves, each
traveling at angles 6, =sin™'(Av,), 6, =sin"'(Av,), with a complex envelope

F(,,v,), the Fourier transform of f(x, y).

) Figure 4.1-3 A thin optical element of ampli-
i 1 =~ tude transmittance f(x, y) decomposes an inci-
/) ) dent plane wave into many plane waves. The
/ plane wave traveling at the angles 6, = sin~! Av,

/// and @, = sin” . Av, has a complex envelope

Fy,, v;,). the Fourier transform of f(x, y).
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¥

Example 4.1-2, Imaging

2

t(x,y)=exp| j % = exp(— j27p(x, ))

2
X
X,y)=———
@(x,y) 20
Compare to earlier: ¢(x,y) <> v x+ v,y
Now v_varieswithx > v _= 9p(x, ) -
ox M

— A cylindrical lens with focal length f

Figure 4.1-7 A transparency with transmittance f(x,y) = exp(jmx2/Af) bends the

Wave at position x by an angle 8. = —r /f < . - e "
length f. : gle 6, x/f so that it acts as a cylindrical lens with focal
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B. Transfer Function of Free Space
Since an arbitrary function can be analyzed as sum of harmonic functions, we
consider a harmonic input function.

x

fix,¥) U(x y:2) /‘ glx, y)
¥ V

" ///))}(

f h g
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Figure 4.1-9 Propag: iion of light between two planes is reparded as a linear system whose
input and output are the complex amplitudes of the wave in the two planes.

S(x,y)=U(x,y,0) = Aexp[—j27n(V x+V, V)]
Output g(x,y)=U(x,y,d)=Aexp[—jlkx+k,y+k.d)]

0 g(x,y) _ k.d
V,,v,)= e )eXP(J )

| %
=exp —j27t(—2—vf —Vyz) d
A
Fresnel approximation

vitvl<< %12

— The plane-wave components of the propagating light make small angles
0, ~Av,.,0 ~Av,.
— Paraxial waves:

HW,,v,) = exp(—jkd)exp|jzAd(v? +v?) (4.1-8)
Validity of Fresnel approximation has the same expression as in Sec. 2.2.

(4.1-6)

Input-output relation
Given the input function f(x,y), how to obtain the output g(x, y):

(1) Determine the complex envelopes of the plane-wave components in the
input plane by Fourier transform.

Fw,v,)= | [£(ry)expli2z(v.x+v,y)ldxdy

—oco—00



EFE 485, Winter 2004, Lih Y. Lin

(2) Complex envelopes of the plane-wave components in the output plane =
HV_.v)F{V.,v))
() &)= [[HWv ) FW,.v,)expl=2m0 x +v,y)ldv.dv,
Under Fresnel approximation,
g, y)=H, [[Fv..v,)expljmdd (v} +V})]exp[—j2x(V x+v,y)ldv.dv,
H, =exp(—jkd)
Free-space propagation as a convolution

Each point generates a spherical wave. Under Fresnel approximation (observation
point close to the propagation axis), spherical wave — parabolic wave.

Wavefront
Wavefront

Figure 4.1-12 The Huygens—Fresnel principle. Each point on a wavelront generates a spherical
wave,
2 2
. X+
h(x,y) = h, exp{— ik Zdy } (4.1-13)

J .
h, =—"—exp(—jkd
0T d p(—Jjkd)

g(x,y)=h, Hf(x',y')exl;{—jfc(’C_’“')z/;(y_y')2 dy' (4.1-14)

4.2 Optical Fourier Transform
A plane wave transmitting through an optical element can be used to
decompose the harmonic functions (Fourier components F(v,,v,)) that

compose the pattern ( f(x, y)) on the optical element.

A. Fourier Transform in the Far Field (Fraunhofer Approximation)
If f(x,y) is confined to a small area of radius b, distance d to the observation

plane is sufficiently large, so that Fresnel number for f(x,y), N,'= b%d <<1.
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2 2
X"+ X
y F(, y
Ad Ad~ Ad
Furthermore, if we limit our interest to points at the output plane within a circle

of radius a centered about the z axis, so that N, = a%d <<1 for g(x,y).

) (4.2-4)

g(x,y)=hyexp| — jzx

X

g(x,y)=hF (ﬁ, (4.2-1)

s
a

glx,y)

Figure 4.2-1  When the distance d is sufliciently long, the complex amplitude at point (& ."}.m
the z = d plane is proportional to the complex amplitude of the plane-wave component WITI
angles 0, = x/d = Av, and 0, = y/d = Av,, i.c., to the Fourier transform F(v,,v,) of Mg
with v, = x/Ad and v, = y /Ad.

— The only plane wave that contributes to the complex amplitude at (x, y) at

output plane is the wave making angles 6. =%,0y =% with the optical axis.

This 1s also the wave with wave-vector components k= (%)1(, k, = (% jk and

amplitude F(v,,v,) with v, = % PR % g
e Fraunhofer approximation is valid when both N, and N,.' are small.

B. Fourier Transform Using a Lens

,\\\\\\\\\\\\\\\\\\w/\‘ II _

e f—

Figure 4.2-2 Focusing of a plane wave into a point. A direction (0, #,) is mapped into @ pol
(x,y)=10.1,0,f)

Focal
plane

nt
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Amplitude of the plane wave with direction (6,,0)=(4dv ,Av ) is
proportional to the Fourier transform F(v_,v ) and is located at the point

() =(0.1.6,1) = (v, 3V,
— g(x,y)ec F(o, 2 (4.2-5)

aglx, y)

Focal plane

d |

Figure 4.2-3 Focusing of the plane waves associated with the harmonic Fourier components of
the input function f{x, y} into points in the focal planc. The amplitude of the plane wave with
direction (0,,0,) = (Av,, Av,) is proportional to the Fourier transform F(v,, v,) and is focused at

the point (x, ¥) = (0. f,0,) = (A frv,, Afv,).

g(w)=§exp[—jk(d+f)]exp{jn (+y )= )}F(i Yy 428

Af? AfAf
| Xy ’
I(x,y)=——|F(——,~— 4.2-9
()= FOmD) (4.2-9)
_ = expl—i x Y i
Ifd=71, g(x,y)—/ifeXp[ J2kf]F(ﬂf,ﬂf) (4.2-10)

Fourier transform using a lens is valid in Fresnel approximation (only radius at
the output is limited). Without the lens, we need Fraunhofer approximation
(radii at both output and input are limited).

4.3 Diffraction of Light

Light not simply blocked by an opaque object, as in Ray Optics. It depends on
the wavelength, the dimension of the object, and the distance between the
object and the observation plane.

A. Fraunhofer Diffraction

Aperture function p(x, y), with Fourier components P(v,,V )= P(é,%).
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Assume the incident wave is a plane wave of intensity /, in z-direction.

Using Eq. (4.2-1), Fraunhofer approximation, we obtain:
2

I, Xy
I(x,y)=— ; 4.3-4
(x, ) (d)’ ( o Ad) (4.3-4)
— Proportional to the squared magnitude of the Fourier transform of the
aperture function p(x,y) evaluated at the spatial frequency v_= %, v, = %
Example: Fraunhofer diffraction from a circular aperture
2 2 2
1(p)=| 2| 1| 2P/ Ad) (437)
47d nDp/Ad

— Airy pattern. Center disk (Airy disk) has radius p, =1.224d / D, subtending
an angle 6 =1.221/D.

Diffraction
pattern

()

Aperture
\
. . ]
D] | / 0 Py
"/
Figure 4.3-4 The Fraunhofer diffraction pattern from a circular aperture produces the
Airy pattern with the radius of the central disk subtending an angle 6 = 1.22A/D.

B. Fresnel Diffraction

At small distance (d — 0), the diffraction pattern is the shadow of the aperture.
At medium distance (Fresnel diffraction), the diffraction pattern is the
convolution of the aperture. Using Eq. (4.1-14), free-space propagation as a
convolution, we obtain:

2
1 . . x—x' ? + —y')’ (A
Gy [[p(x',y )eXp{— ja=r) M(y Y) }dx dy
At large d, the diffraction pattern becomes Fraunhofer diffraction pattern. The

far field has an angular divergence proportional to A/D, where D is the
diameter of the aperture.

I(x,v) = (4.3-11)
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(b)

Figure 4.3-7 Fresnel diffraction from a slit of width D = 2a. (¢) Shaded arca is the
geometrical shadow of the aperture, The dashed line is the width of the Fraunhofer
diffracted beam. () Diffraction pattern at four axial positions marked by the arrows in
(a) and corresponding to the Fresnel numbers Np o= 10, 1,0.5, and 0.1, The shaded arca
represents the geometrical shadow of the slit. The dashed lines at |x] = (A /D)d represent
the width of the Fraunhofer pattern in the far field, Where the dashed lines coincide with
the edges of the geometrical shadow, the Fresnel number Np = a’/Ad = 0.5,

4.4 Image Formation
Spatial filtering
Two-lens imaging system (4-f system). Unity maginification.

ot e T

=i

[ x

Object plane Fourier plane Image plane

Figure 4.4-3 The 4-f imaging system. If an inverted coordinate system is used in the image
plane, the magnification is unity.

4-f imaging system for Fourier transform. The Fourier components of f(x,y) are

separated by the lens. Each point in the Fourier plane corresponds to a single
spatial frequency (Recall Fig. 4.2-2). The second lens reconstructs the image.
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Fourier plane

Figure 4.4-4 The 4-f system performs a Fourier transform followed by an inverse Fourier
transform, so that the image is a perfect replica of the object.

Spatial filtering: Add a mask at the Fourier plane to block unwanted Fourier
components of f(x,y).

Lens ;‘-\_\ _ _~
Mask
XA
Lens gix. )

/

Image plane

| susee //{
/ : /~/f x
Plane Fourier plane p
wave - /
y F
i
Object plane ,(/

Figure 4.4-5 Spatial filtering. The transparencies in the object and Fourier planes have
complex amplitude transmittances f(x, y) and p(x, y). A plane wave traveling in the z direction
is modulated by the object transparency, Fourier transformed by the first lens, multiplied by the
transmittance of the mask in the Fourier plane and inverse Fourier transformed by the second
lens. As a result, the complex amplitude in the image plane g(x,y) is a filte

red version of
f(x, ). The system has a transfer function (v, v,)=p(Afv., Afv,)

Transfer function of the mask for the Fourier components:
HW,.v,)=pHv, 4v,) (4.4-4)
Output: GVv,.,v,)=HV,V)F{V.V)

Example:
(a) Low-pass filter

H(,v,)=1 for v +Vy2 <v?, v, :cutoff frequency
H(v,v,)=0 othewise

10
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A low-pass filter for spatial frequency is a circular aperture of diameter
D=2v Af .

(b) High-pass filter
Complement of low-pass filter.
Output is high at regions of large rate of change, small at regions of smooth or
slow variation of the object.
Application: Edge enhancement in image-processing.

(c) Vertical-pass filter

Blocks horizontal frequency and transmits vertical frequency.
Object Mask

Image

{a)

b

mEEy

(c)

F =1 P

H:E:U"l‘?f.djﬁ I-,xunmlcs of object, mask, and filtered image for

= .l'. b) high-pass filter; (¢) vertical-pass filter. Black means the
cans the transmittance is unity.

three spatial filters: () low-pass
transmittance is zero and white

4.5 Holography
Recording and reconstruction of optical waves.
Consider an arbitrary monochromatic optical wave. At z=0 plane,
U=U,(x,y). If a thin optical element (transparency) has complex amplitude

transmittance #(x,y)=U,(x,y). llluminate the transparency with a uniform
plane wave in z-direction, the optical wave U(x, y) can be reconstructed.
Transparency — Hologram

11
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How to get #(x,y) from U,(x, y)? Phase information is very important. Need
some kind of coding to transform phase into intensity.

Holographic code and off-axis holography
Mixing the original wave (object wave) U, with a known reference wave U, , and

recording their interference pattern in z =0 plane.

t(x,y)e< I +1,+U U, +UU, (4.5-1)
Decoding: [lluminate the hologram with U,
U=tU «<UI +UI,+I1U,+U’U, (4.5-2)

First and second terms — Reference wave
Third term — Original wave
Fourth term — Conjugate of the original wave

Hologram

fa) fb)
Figure 4.5-1 (a) A hologram is a transparency on which the interference pattern between the
original wave (object wave) and a reference wave is recorded. () The original wave is recon”

structed by illuminating the hologram with the reference wave.

Example 4.5-1: Hologram of an oblique plane wave
Uy(x,y) = /1, exp(—jkxsin 6)

U(x,u)oc I +1,+/1 1, exp(—jkxsin0)+ /1 1, exp(jkxsin 8)
—  Diffraction grating

Object Conjugate

fal (1.}

Figure 4.5-2 The hologram of an oblique plane wave is a sinusoidal diffraction grating:
(a) recording; (b) reconstruction.

12
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How to make sure the object wave can be well separated?

Consider an arbitrary object wave whose propagation direction centers about 6. At
z=0 plane, U,(x,y) = f(x,y)exp(—jkxsin6).

Assume f(x,y) varies slowly so that its maximum spatial frequency v,
corresponding to 8, =sin™' (v, )<< 8.

UG, y) o< 1, +|f o) ++/1, £ (x, y) exp(=jkxsin 0) + /1, f * (x, y) exp(+ ke sin 6)

‘ f(x, y)‘2 : Ambiguity term — Non-uniform plane wave in directions with a cone of
26, around the z-direction.

If (1) 6>36,, or (2) I,>>|f(x,)
unambiguously.

2
s

the original wave can be resolved

#

Ambiguity

|

-

fa) h)

Figure 4.5-4 Hologram of an ofl-axis object wave: (a) recording; (b) reconstruction. The object
wave is separated from both the reference and conjugate waves,

Fourier-transform holography
Fourier transform F(v_,v ) of a function f(x,y) can be obtained by a lens (see

Sec. 4.2). F(v,,v,)= F(%f,%f) =U,(x,).

[Nluminate the hologram with U, reconstruct F. The original function f(x,y) is
reconstructed at the focal plane using a lens.

Hologram Hologram

fa) fb)

Figure 4.5-5 Hologram of a wave whose complex amplitude represents the Fourier transform
of a function f(x, y): (a) recording; (b) reconstruction.

13
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The holographic apparatus

One essential requirement for holography: A monochromatic light source with
minimum phase fluctuations.

— A coherent light source, usually a laser.

5 ][ Laser 3 . { Laser I

Object

-~\\ o
..... Mot lﬁ‘, <
N ———
- Hologram
<
fa) b)

Figure 4.5-7 Holographic recording (a) and reconstruction (b).

14



