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Chapter 4  Fourier Optics 
 

- Based on harmonic analysis (Fourier transform) and liner system 
(superposition). 

- An arbitrary function 

yxyxyx ddyxjFyxf ννννπνν )](2exp[),(),( +−= ∫ ∫
∞

∞−

∞

∞−

 

 → Superposition, or integral of harmonic functions of x and y. 
  ),( yxF νν : Complex amplitude 
  yx νν , : Spatial frequency (cycles/unit length) 

 
- Compare this with plane wave 
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- An arbitrary function can be analyzed as a superposition of harmonic functions. 
→ An arbitrary traveling wave ),,( zyxU  may be analyzed as a sum of plane 
waves! 

 
4.1 Propagation of Light in Free Space 
A. Correspondence Between the Spatial Harmonic Function and the Plane Wave 
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     (4.1-1) 

A physical way of picturing the spatial harmonic function is to project a plane 
wave on the x-y plane. 
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Paraxial approximation: 
  yx    , λνλθλνλθ =Λ==Λ=

y
y

x
x     (4.1-2) 

 
Spatial spectral analysis 
(Response of a plane wave after a thin optical element.) 
Consider a simple case: 
 

 
 

  )](2exp[),( yxjyxt yx ννπ +−=  

 → Harmonic function on x-y plane with period 
y

y
x

x νν
1 ,1 =Λ=Λ . 

  )exp()](2exp[),,( zjkyxjAzyxU zyx −+−= ννπ  
→ Output wave is bent with angles )(sin  ),(sin 11

yyxx λνθλνθ −− == . 
The harmonic function pattern works like a grating. 

Now consider a general case: 
  yxyxyx ddyxjFyxt ννννπνν )](2exp[),(),( +−= ∫∫   (4.1-4) 
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 yxzyxyx ddzjkyxjFzyxU ννννπνν )exp()](2exp[),(),,( −+−= ∫∫  

  222
222 1112
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→ An incident plane wave is decomposed into many plane waves, each 
traveling at angles )(sin  ),(sin 11

yyxx λνθλνθ −− == , with a complex envelope 
),( yxF νν , the Fourier transform of ),( yxf . 

 

 
 
Example 4.1-2, Imaging 
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Compare to earlier: yxyx yx ννϕ +↔),(  

Now 
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  → A cylindrical lens with focal length f 
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B. Transfer Function of Free Space 

Since an arbitrary function can be analyzed as sum of harmonic functions, we 
consider a harmonic input function. 

 
  )](2exp[)0,,(),( yxjAyxUyxf yx ννπ +−==  
Output )](exp[),,(),( dkykxkjAdyxUyxg zyx ++−==  
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   (4.1-6) 

 
Fresnel approximation 
  2

22 1
λνν <<+ yx    

→ The plane-wave components of the propagating light make small angles 
yyxx λνθλνθ ~,~ . 

→ Paraxial waves: 
  ( )[ ]22exp)exp(),( yxyx djjkdH ννπλνν +−=    (4.1-8) 
Validity of Fresnel approximation has the same expression as in Sec. 2.2. 
 
Input-output relation 
Given the input function ),( yxf , how to obtain the output ),( yxg : 

(1) Determine the complex envelopes of the plane-wave components in the 
input plane by Fourier transform. 

dxdyyxjyxfF yxyx )](2exp[),(),( ννπνν += ∫ ∫
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(2) Complex envelopes of the plane-wave components in the output plane = 
  ),(),( yxyx FH νννν  
(3)  yxyxyxyx ddyxjFHyxg ννννπνννν )](2exp[),(),(),( +−= ∫∫  
 Under Fresnel approximation, 

 
)exp(        
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+−+= ∫∫ ννννπννπλνν
 

 
Free-space propagation as a convolution 
Each point generates a spherical wave. Under Fresnel approximation (observation 
point close to the propagation axis), spherical wave → parabolic wave. 
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4.2 Optical Fourier Transform 

A plane wave transmitting through an optical element can be used to 
decompose the harmonic functions (Fourier components ),( yxF νν ) that 
compose the pattern ( ),( yxf ) on the optical element. 

 
A. Fourier Transform in the Far Field (Fraunhofer Approximation) 

If ),( yxf  is confined to a small area of radius b, distance d to the observation 

plane is sufficiently large, so that Fresnel number for ),( yxf , 1'
2

<<= d
bNF λ . 
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Furthermore, if we limit our interest to points at the output plane within a circle 
of radius a  centered about the z axis, so that 1

2
<<= d

aNF λ  for ),( yxg . 

  ),(),( 0 d
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→ The only plane wave that contributes to the complex amplitude at (x, y) at 

output plane is the wave making angles d
y

d
x

yx == θθ ,  with the optical axis. 

This is also the wave with wave-vector components ( ) kd
ykkd

xk yx 




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amplitude ),( yxF νν  with d
y

d
x

yx λνλν == , . 

• Fraunhofer approximation is valid when both ' and FF NN  are small. 
 
B. Fourier Transform Using a Lens 
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Amplitude of the plane wave with direction ),(),( yxyx λνλνθθ =  is 
proportional to the Fourier transform ),( yxF νν  and is located at the point 

),(),(),( yxyx ffffyx νλνλθθ == . 

  →  ),(),(
f
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f
xFyxg

λλ
∝       (4.2-5) 
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If fd = , ),(]2exp[),(
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Fourier transform using a lens is valid in Fresnel approximation (only radius at 
the output is limited). Without the lens, we need Fraunhofer approximation 
(radii at both output and input are limited). 

 
4.3 Diffraction of Light 

 
Light not simply blocked by an opaque object, as in Ray Optics. It depends on 
the wavelength, the dimension of the object, and the distance between the 
object and the observation plane. 

 
A. Fraunhofer Diffraction 

Aperture function ),( yxp , with Fourier components ),(),(
d
y

d
xPP yx λλ

νν = . 
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Assume the incident wave is a plane wave of intensity iI  in z-direction. 
Using Eq. (4.2-1), Fraunhofer approximation, we obtain: 

  
2

2 ),(
)(

),(
d
y

d
xP

d
IyxI i

λλλ
=      (4.3-4) 

→ Proportional to the squared magnitude of the Fourier transform of the 

aperture function ),( yxp  evaluated at the spatial frequency 
d
y

d
x

yx λ
ν

λ
ν ==  , . 

 
Example: Fraunhofer diffraction from a circular aperture 
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→ Airy pattern. Center disk (Airy disk) has radius Dds /22.1 λρ = , subtending 
an angle D/22.1 λθ = . 
 

 
 
B. Fresnel Diffraction 

 
At small distance ( 0→d ), the diffraction pattern is the shadow of the aperture. 
At medium distance (Fresnel diffraction), the diffraction pattern is the 
convolution of the aperture. Using Eq. (4.1-14), free-space propagation as a 
convolution, we obtain: 

222

2 '')'()'(exp)','(
)(

),( ∫∫ 






 −+−−= dydx
d

yyxxjyxp
d
IyxI i

λ
π

λ
 (4.3-11) 

At large d, the diffraction pattern becomes Fraunhofer diffraction pattern. The 
far field has an angular divergence proportional to D/λ , where D is the 
diameter of the aperture. 
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4.4 Image Formation 
Spatial filtering 
Two-lens imaging system (4-f system). Unity maginification. 

 
 
4-f imaging system for Fourier transform. The Fourier components of ),( yxf  are 
separated by the lens. Each point in the Fourier plane corresponds to a single 
spatial frequency (Recall Fig. 4.2-2). The second lens reconstructs the image. 



EE 485, Winter 2004, Lih Y. Lin 

 10

 
 
Spatial filtering: Add a mask at the Fourier plane to block unwanted Fourier 
components of ),( yxf . 

 
Transfer function of the mask for the Fourier components: 
  ),(),( yxyx ffpH νλνλνν =      (4.4-4) 
Output:  ),(),(),( yxyxyx FHG νννννν =  
 
Example: 
(a) Low-pass filter 
  frequency cutoff :          ,for    1),( 2

s
2
y

2
x syxH νννννν <+=  

othewise  0),( =yxH νν  
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A low-pass filter for spatial frequency is a circular aperture of diameter 
fD sλν2= . 

(b) High-pass filter 
Complement of low-pass filter. 
Output is high at regions of large rate of change, small at regions of smooth or 
slow variation of the object. 
Application: Edge enhancement in image-processing. 

(c) Vertical-pass filter 
Blocks horizontal frequency and transmits vertical frequency. 

 
 

4.5 Holography 
Recording and reconstruction of optical waves. 
Consider an arbitrary monochromatic optical wave. At 0=z  plane, 

),(0 yxUU = . If a thin optical element (transparency) has complex amplitude 
transmittance ),(),( 0 yxUyxt = . Illuminate the transparency with a uniform 
plane wave in z-direction, the optical wave ),( yxU  can be reconstructed.  
Transparency → Hologram 
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How to get ),( yxt  from ),(0 yxU ? Phase information is very important. Need 
some kind of coding to transform phase into intensity. 
 

Holographic code and off-axis holography 
Mixing the original wave (object wave) 0U  with a known reference wave rU , and 
recording their interference pattern in 0=z  plane. 
  *

00
*

0),( UUUUIIyxt rrr +++∝      (4.5-1) 
Decoding: Illuminate the hologram with rU , 
  *

0
2

00 UUUIIUIUtUU rrrrrr +++∝=     (4.5-2) 
 First and second terms → Reference wave 
 Third term → Original wave 
 Fourth term → Conjugate of the original wave 

 
Example 4.5-1: Hologram of an oblique plane wave 
  )sinexp(),( 00 θjkxIyxU −=  
  )sinexp()sinexp(),( 000 θθ jkxIIjkxIIIIuxU rrr +−++∝  
 → Diffraction grating 
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How to make sure the object wave can be well separated? 
Consider an arbitrary object wave whose propagation direction centers about θ . At 

0=z  plane, )sinexp(),(),(0 θjkxyxfyxU −= . 
Assume ),( yxf  varies slowly so that its maximum spatial frequency sν , 
corresponding to θλνθ <<= − )(sin 1

ss . 
)sinexp(),(*)sinexp(),(),(),( 2 θθ jkxyxfIjkxyxfIyxfIyxU rrr ++−++∝

2),( yxf : Ambiguity term → Non-uniform plane wave in directions with a cone of 

sθ2  around the z-direction. 

If (1) xθθ 3> , or (2) 2),( yxfIr >> , the original wave can be resolved 
unambiguously. 

 
 

Fourier-transform holography 
Fourier transform ),( yxF νν  of a function ),( yxf  can be obtained by a lens (see 

Sec. 4.2). ),(),(),( 0 yxUf
y

f
xFF yx == λλνν . 

Illuminate the hologram with rU  reconstruct F. The original function ),( yxf  is 
reconstructed at the focal plane using a lens. 
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The holographic apparatus 
One essential requirement for holography: A monochromatic light source with 
minimum phase fluctuations. 
→ A coherent light source, usually a laser. 
 

 


