Interferometry & Asteroseismology of Solar-like Stars

(+ their Connection to Exoplanets)

Daniel Huber

NASA Ames Research Center

Feb 11 2014

Fundamental Properties of Stars

Temperature (T) Radius (R) **Chemical Composition** Mass (M) Surface Gravity (g) Luminosity (L) Density (ρ) Age

$$g = GM/R^{2}$$
$$L \propto R^{2} T^{4}$$
$$\rho \propto M/R^{3}$$

Goal: use observables to determine measureable stellar properties, in order to test models and infer properties which cannot be directly measured (ages in particular)

Distances to Stars: Parallaxes

 $L \propto f_{bol} d^2$ \uparrow total flux received on Earth

very fundamental; however, distance alone does not give a measurement of stellar properties

Angular Diameters of Stars

 $\mathbf{R} = \mathbf{d} \, \mathbf{\alpha}/2$

Angular size + Distance gives a direct measurement of the star's Radius

 $F = \sigma T_{eff}$ $f_{bol} = F R^2/d^2$ $\mathbf{R} = \mathbf{d} \, \boldsymbol{\alpha}/2$ $T_{eff} = (4 f_{bol} / \sigma \alpha^2)$

A stars temperature is defined through it's angular diameter and bolometric flux

Interferometry

Measuring Stellar Angular Diameters

Telescope resolution (Diffraction Limit): R=1.22 λ/d

In general, observing at the diffraction limit is not possible because of Earth's atmosphere; observations are "seeing-limited"

(even that wouldn't be enough: the diameter of the Sun at a distance of 5 parsec is ~7 x smaller than the diffraction limit of a 10-m telescope)

Measuring Stellar Angular Diameters

What if we place two telescopes at a large distance apart from each other, and combine the light?

"Visibility" = Contrast of the observed interference ("Fringe") pattern

$$V = (I_{max} + I_{min}) / (I_{max} - I_{min})$$

For a point source at infinity, V=1 (perfect interference)

The contrast of the observed interference pattern allows a measurement of the angular size of an object with a resolution that is inversely proportional to the separation of the two telescopes - which can be huge!

Early Days: the Michelson interferometer

Albert Michelson measured the angular size of Betelgeuse to be ~0.05 arcseconds ~ 1×10^{-5} degrees; combined with it's parallax, the radius was determined to be 150 x 10⁶ km (roughly the perihelion distance of Mars) - the first stellar diameter measurement!

Center for High-Angular Resolution Astronomy

Center for High-Angular Resolution Astronomy

CHARA Data of a Solar-like Star

White et al. 2013

A Measured HR Diagram!

"Model"

observed radii of cool dwarfs (spectral type M) are systematically higher than predicted by models by up to 20%; a major unsolved problem in stellar astrophysics!

Fundamental Properties of Stars

Temperature (T) Radius (R) **Chemical Composition** Mass (M) Surface Gravity (g) Luminosity (L) Density (p)

Age

 $g = GM/R^2$ $L \propto R^2 T^4$ $\rho \propto M/R^3$

to really test stellar models, we still need a way to measure a star's density, gravity, or mass

Asteroseismology

What causes Stellar Oscillations?

What causes Stellar Oscillations?

Oscillations are Standing Sound Waves

n = number of node lines

$L k = n \pi$

dispersion relation: $\omega = c k \longrightarrow \omega = n \pi c / L$

The sound speed depends on the properties of the gas:

for an ideal gas:
$$c \propto \sqrt{T/\mu}$$

The measurement of frequencies of oscillations in stars allow us to probe the sound speed (and hence temperature and composition) in the stellar interior

Surface Node Lines

l = spherical degree (total number of surface node lines)

m = azimuthal order (number of azimuthal node lines, i.e. going through the rotation axis)

l=3, m=1 l=3, m=3 l=2, m=0

l=10, m=5

l=1, m=1

Stellar Oscillations cause Variations in Brightness

Fourier transform -> Frequency Spectrum

Oscillations driven by convection ("solar-like" oscillations) typically show a very rich spectrum of frequencies

$$\Delta \mathbf{v} = (2 \int dr/c_s)^{-1}$$

 $(\omega = n \pi c / L!)$

(nearly) model-independent!

Caveat: oscillations are very hard to detect

Caveat: oscillations are very hard to detect

ground-based observations of oscillations in solar-like stars are very difficult due to Earth's atmosphere; however, spacebased observations have revolutionized asteroseimology in the past few years!

CoRoT

(launched 2007)

MOST

(launched 2003)

(launched 2009)

Which one is the Sun?

Which one is the Sun?

Fundamental Properties of Stars

Temperature (T) Radius (R **Chemical Composition** Mass (M) Surface Gravity (g) Luminosity (L) Density (p)

 $g = GM/R^2$ $L \propto R^2 T^4$ $\rho \propto M/R^3$

Goal: find a sample for which we can measure oscillations *and* angular diameters!

Oscillation Spectra of 10 Kepler Stars

CHARA Interferometry of 10 Kepler Stars

Test Models!

Subgiant with "normal" chemical composition: spot-on agreement

Huber et al. 2012

Test Models!

Metal-rich dwarf: slightly impossible; best explanation: model atmospheres (used for bolometric flux) have errors

Huber et al. 2012

The Connection to Planets

(and binary stars)

The Kepler Space Telescope

Main mission goal: determine the frequency of Earthsized planets in the habitable zones of Sun-like stars

The Transit Method

TIME IN HOURS

Knowing Star Sizes is important!

Stellar Oscillations = Size of the Star

Transit = Planet Size relative to Star Size

Kepler-37: Asteroseismology

 $\Delta v = 178.7 \ \mu Hz$ R = 0.772+/- 0.026 Rs

Densest solar-like star with detected oscillations yet!

Kepler-37: Transits

3 transiting planets

orbital periods: 13, 21 and 40 days

precise knowledge of the planet radii thanks to the asteroseismic detection in the host star!

Kepler-37 Planets compared to the Solar System

A Kepler Weirdo

A Kepler Weirdo

Kepler light curve shows deep dips with ~20 day period, and shallow dips with ~1 day period. What's going on?

CHARA Interferometry

Primary Star must be Giant!

Derekas et al. 2011, Science

Derekas et al. 2011, Science

A story on Asteroseismology and Public Outreach

(if there is time)

A Kepler "concert" of Red Giant Stars

Astronomers study the sound of stars

Australian Geographic

??? (Russia)

"The Wall Street Journal" reported on Friday that astronauts recorded sound waves that resemble humming emanating from a cluster of giant red stars.

But why wait until the earth is uninhabitable to look beyond humans and human-made machines for musical innovation? If Jason Pierce got his hands on Huber's recording, I'm sure he could produce a an emotionally wrenching Spiritualized album that could pave the way for some pretty inspiring, intergalactic collaborations.

Death and Taxes Magazine (USA)

Asteroseismology meets Contemporary Art

J<u>EFF TALMAN</u>

Sound, Video, Sculpture, Graphics, Photography

The Bayerische WaldVerein Sektion Furth im Wald presents BAVARIAN FOREST INSTALLATION IV

NATURE OF THE NIGHT SKY (2011)

in collaboration with Daniel Huber, astrophysicist Sydney Institute of Astronomy, Australia

> May 7 – September 18, Berghof Gibacht Waldmünchen – Furth im Wald, Germany

Every evening in the forest just after sunset a 50-minute program features the harmonic resonant sound of stars

Sydney institute for Astronomy

-

www.jefftalman.com