Introduction and Experiments on Transmitter Localization with TDOA

Stefan Scholl, DC9ST

Basic Idea of TDOA

- TDOA = Time-Difference-of-Arrival (Multilateration)
- use several receivers and
- analyze time difference of received signal
- apply geometry to determine position of transmitter

Multilateration: Basics

Multilateration: Basics

Multilateration: Basics

Delay Measurement

- How to measure delay between two signals?
- Correlation function

$$Corr(\tau) = \sum_{t=0}^{N-1} s_1(t)s_2(t+\tau)$$

s1(t), s2(t): received signals by RX1 and 2

- "Tries every possible delay and records how good the signals match"
- Example:

Peak -> best match, most likely delay

Resolution Analysis

Resolution of delay measurement ≠ Resolution of localization on map!

Summary on Basics

Theory:

- TDOA analyzes time differences of signal arrival
- requires 3 <u>synchronized</u> receivers
- difference /delay measurement with correlation
- good accuracy in area surrounded by RXes

NEXT:

- Praxis:
 - How to build a real system
 - Receiver setup, synchronization and connection
 - Signal processing
 - Results

Low Cost TDOA System: Overview

• Goal: Localize transmitter in the city of Kaiserslautern, Germany, with

simple system

3 Simple Receivers

- Raspberry PI + RTL-Stick
- simple antenna
- antenna indoor
- correct frequency with "kalibrate-rtl" (using GSM channel)
- newer versions of RTL-SDR: better frequency stability

RTL-SDR Properties

- receives any signals from 70 MHz to >1 GHz
- bandwidth 2 MHz
- achievable resolution for delay measurement
 2 MHz sampling => 500 ns * 3e8 m/s = 150 m

Low Cost TDOA System: Receiver Placement

Low Cost TDOA System: Infrastructure

Master PC for RX control and (offline) signal processing

- our available DSL upload: max. 1 Mbit/s
- 1s recording takes approx. 1/2 min to copy

Low Cost TDOA System: Synchronization

Low Cost TDOA System: Synchronization

reference signal unknown signal for synchronization to localize

Reception at each receiver

Synchronization:

- 1. start reception at RXes roughly the same point in time
- 2. align received signals along reference signal (+ known delay to reference TX)
- -> Received signals get synchronized, not the RXes themselves!

Is seamless switching possible with the RTL-SDR?

librtlsdr (c lib to talk to RTI-SDR) crashed, when modified to switch frequencies during reception

Yes! Solution:

use branch async-rearrangements, https://github.com/mutability/librtlsdr/tree/async-rearrangements Seamless switching works perfectly fine:

Download of modified lib at: http://www.panoradio-sdr.de/tdoa-transmitter-localization-with-rtl-sdrs/

Correlation of Real Signals

Real signals received by 2 RTL-SDRs at different locations

- Quality of correlation dependens on
 - Noise / SNR
 - Signal length
 - Signal bandwidth
 - Multi-Path Propagation
 - Signal content!

- Correlation may have:
 - multiple ambiguous peaks
 - no distinct peaks

Improvements On Correlation

Signal Processing

- Matlab script running on Master PC
- consider receptions pairwise to create a hyperbola
- 1. receive signals & send to master
- 2. synchronize RXs:
 - interpolate reference signals (optional)
 - calculate correlation (dphase or abs)
 - discard invalid peaks of correlation function
 - use measured delay to synchronize
- 3. measure unknown signals
 - interpolate signals (optional)
 - correlation (dphase or abs)
 - discard invalid peaks of correlation function
 - determine TDOA in samples and distance
- 4. calculate hyperbola using geometry
- 5. create a html / javascript file for google maps to display results

Results: 70cm DMR Repeater

Results: mobile telephony

Results: FM broadcasting

Results: unknown signal

Summary

Further information and project files available:

http://www.panoradio-sdr.de/tdoa-transmitter-localization-with-rtl-sdrs/

Email: dc9st@panoradio-sdr.de

Correlation in Time Domain

Correlation for IQ signals

- Correlation function introduced for real signals
- RTL-SDR delivers I/Q outputs
- treat I/Q value as complex value: (I+j*Q)
- options for IQ correlation:
 - complex correlation
 - real correlation with abs(I+j*Q)
 - real correlation with phase difference of (I+j*Q)