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Abstract—The popularity of wireless communications is grow-
ing every year, and with it the possibility of threats in the
electromagnetic spectrum increases. One of the key aspects to
stop these attacks is to be able to localize where the threat is com-
ing from. Current commercial products make use of expensive
hardware and GPS-based synchronization techniques to perform
geolocation. In this thesis we propose a network architecture
based on low cost, GPS-free Software-Defined Radio (SDR)
receivers that localizes a signal transmitter in a collaborative
manner. We perform evaluations on different components of the
architecture such as receiver imperfection correction, reference
signals and multilateration approaches. Our results indicate that
signal transmitter localization is feasible with the architecture
proposed even using low-cost radio receivers.

Index Terms—Outdoor Localization, TDOA, SDR, Sensor
networks.

I. INTRODUCTION

With the advent of wireless devices and technologies, wire-
less communication infrastructure is growing at a frantic pace
[1]. Furthermore, the arrival of 5G networks will accelerate
this growth. Wireless communication is possible due to a valu-
able and scarce resource, the Electromagnetic (EM) spectrum.
Being a core pillar of today’s society, from individuals to
nations and companies, monitoring and detecting threats in
the EM spectrum is of fundamental importance.

Attacks on the spectrum can be done with relatively afford-
able equipment and they can target any radio frequency, thus
they can wreak havoc in highly populated areas. These attacks
may come from other nations, criminal organizations or even
individuals and they can take diverse forms: false telephony
towers (that can be easily built with current technology) that
may interfere with mobile devices, fake transmitters that emit
deceptive signals, unauthorized transmissions to deactivate
meteorological radars or GPS spoofing devices [2] [3].

Even though the EM spectrum is heavily regulated and
the threats mentioned above have the potential to disrupt
communications at a large scale, little is known yet of how
spectrum is used and where are those anomalies. Current
equipment used to detect these illegal transmissions is ex-
pensive, bulky and heavy and it is therefore not suitable
to deal with the types of attacks above mentioned. Besides,
detecting threats in a fast and accurate manner requires large
financial and labor investments. In the past years, there have
been attempts at monitoring the radio frequency spectrum, like
Google Spectrum [4] or Microsoft Spectrum Observatory [5].
There exist companies like CRFS1 who provide commercial

1https://www.crfs.com/
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Fig. 1. Unknown transmitter can be localized collaboratively by using
a network of sensors that make use of a reference signal transmitter to
synchronize among them

spectrum monitoring solutions with custom hardware and thus
higher costs.

In recent years, the cost of SDR has decreased drastically,
and devices like the RTL-SDR, whose cost is around 15-20 $
have proliferated. The popularity of these low-cost receivers
has led to the emergence of new spectrum monitoring solutions
[6], that can outperform more advanced systems at a fraction
of their cost. One of the most notable examples is Electrosense
[7] [8], a crowd sourced EM spectrum monitoring initiative,
that is based on low cost hardware like the aforementioned
RTL-SDR and the Raspberry Pi2 boards.

When it comes to detecting threats in the wireless channels,
there are 2 main branches: Anomaly Detection and Transmitter
Geolocation. The former is concerned with tagging anomalous
or suspicious transmissions in the spectrum, whereas the latter
looks at positioning the source of that anomalous signal. In this
thesis, we will focus on the Transmitter Geolocation problem.

Literature regarding indoor localization is extense, and an
ample variety of methods are employed such as Received
Signal Strength (RSS), Angle of Arrival (AOA) or Time of
Arrival (TOA). Transmitter localization on the other hand,
has not been as widely studied, and implementations are
often in controlled scenarios, that fail when deployed in more
realistic environments. Previous research has focused on power
based methods, which have lower costs and are easier to
implement at the expense of lower accuracy. Methods based
on Time Difference of Arrival (TDOA) can, in theory, reach
higher accuracy but very few studies have attempted to deploy

2https://www.raspberrypi.org/
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systems with these characteristics using low cost spectrum
sensors.

One of the reasons is that for a TDOA based system to
work, accurate synchronization among sensors is needed. This
is achieved by the use of GPS receivers which increases
the overall cost of the platform. An example of such case
is KiwiSDR3 an amateur radio initiative using custom SDR
boards with GPS receivers and versatile web interface, which
allows users to perform TDOA localization with different
sensors.

However, low cost sensors like the RTL-SDR cannot take
advantage of GPS synchronization. To counter attack this
limitation we propose to use a known Reference Signal (RS) to
synchronize the network of sensors and then make feasible the
localization of the Unknown Signal (US), as Figure 1 shows.

The purpose for this thesis is to explore TDOA based meth-
ods for transmitter localization using the low cost RTL-SDR
receiver and propose an architecture that can be implemented
in a crowd sourced system like [8]. The main contributions
are:

1) An architecture for transmitter localization based on
TDOA, that is GPS free, signal agnostic and embeddable
in a network of low-cost devices like the combination
of Raspberry Pi and RTL-SDR. This architecture takes
into account the SDR imperfections and corrects them.
To solve the problem of time synchronization we will
use a reference signal.

2) An evaluation on different common signals, such as
Long-Term Evolution (LTE), Digital Video Broadcasting-
Terrestrial (DVB-T) or Global System for Mobile Com-
munications (GSM), and their potential to be used as
reference for the localization system.

3) An evaluation on different multilateration algorithms and
their performance using a well known platform.

The remainder of this thesis is organized as follows: Section
II dives into the State of the Art of localization methods
and Section III shows the most notable outdoor localization
approaches that can be found in the literature. Section IV
describes the main challenges of localization systems based
on low cost hardware and Section V proposes an architecture
for such systems. In Section VI we provide evaluation on the
different stages of our architecture and last Section VII will
show some conclusions and future lines of work.

II. LOCALIZATION METHODS

When tackling the problem of localizing unknown trans-
mitters we can distinguish 2 big categories: range-based and

3http://www.kiwisdr.com/

range-free methods. Range is generally tackled from 4 differ-
ent perspectives as it was summarized in [9]:

• RSS: The core of this method is to measure the power
received at different sensors, and by means of a path loss
model, estimating the distance to the transmitter. Sensors
need to be calibrated and a Path-Loss model is needed to
estimate the decay in power.

• AOA: Based on the use of directionally sensitive anten-
nas, it requires specialized hardware.

• TOA: In this technique, the travelling time from the
emitter to the different receivers is measured, and then
position is obtained by performing a multilateration. For
this approach to work, an accurate time synchronization
among sensors and transmitters is needed.

• TDOA: It is similar to the TOA technique, but measuring
the differences in arrival times of the signal to all the
sensors. Since only sensors need to be synchronized in
this scenario, it fits the case of unknown transmitter
localization.

Table I provides a summary of the features of each of the
methods, based on the analysis done in [10]. In the following
sections, we will describe each of these methods in more
detail.

1) RSS based methods: In the past years, a great deal of
effort has been focused on RSS based systems, as it is stated
in [11] and [12]. The situations in which these methods have
been applied range from static transmitter localization with
static sensors [13] [14] or mobile robots [15], distance sensing
for collision avoidance between robots [16] or even wildlife
tracking [17].

The main appeal of RSS based methods is the low hardware
requirements [10], which makes an attractive case for deploy-
ments on large sensor networks. However, these techniques
have their drawbacks such as: (i) Sensors need to be calibrated.
(ii) A Path-Loss model is needed to convert from power mea-
surements to distances. (iii) If there are multiple transmitters,
an algorithm is needed to discriminate the contributions of
each one, and they often have high time complexities [13].
(iv) It requires either knowing the transmitter power or a dense
sensor network.

2) AOA based methods: AOA is an interesting approach
since it only requires a pair of sensors and the angle of
incidence is computed locally, so the amount of information
sent to the backend is less than with other methods [18]. It
also has a notable accuracy both in theory [19] and in practice
[20].

One of the main issues of AOA based methods is that in
order to compute the angle of incidence, an special array of

Name Principle of Operation Special Hardware Attenuation Cost

RSS Signal strength measurement Not necessary High Low
AOA Angle of signal arrival Required Medium High
TOA Time of signal arrival Required Low Medium
TDOA Time difference in signal propagation Required Low Medium

TABLE I
RANGE BASED LOCALIZATION METHODS AND THEIR MOST PROMINENT FEATURES
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antennas is needed, and that poses a notable obstacle when it
comes to deploying a dense AOA system.

3) TOA based methods: TOA has been widely employed
as a localization method in indoor Wireless Sensor Networks,
since it provides accurate results and does not need to make
assumptions on the signal [21]. The general idea is to calculate
the time at which the signal arrives at each sensor (hence the
name TOA), compute the circumferences and calculate the
intersection by means of trilateration.

However, for the algorithm to work, it is necessary to know
the signal’s transmission time, thus making it unsuitable for the
case of identifying and localizing rogue/unknown transmitters.
Furthermore, transmitter and receivers need to be accurately
synchronized, thus GPS based systems are often used.

4) TDOA based methods: TDOA algorithms have been
employed for a long time for various types of localization
tasks. In theory, it has slightly less accuracy to TOA based
localization approaches [21] but with the advantage of only
needing synchronization between receivers, and it is therefore
an interesting approach for the task of localizing unknown
transmitters. After TDOA values are computed for each pair
of receivers, the position of the transmitter is estimated by
means of multilaterating, in a similar manner as in TOA.

In recent years, there has been a part of research shifting
towards hybrid solutions, as it is mentioned in [22] [18] and
[19], where combining TDOA with other methods, authors
achieved higher accuracies than using those methods isolated.

III. RELATED WORK

In recent years, SDR receivers have sprouted, going from
the low-cost RTL-SDR to more high-end ones like the Uni-
versal Software Radio Peripheral (USRP), and many others in
between.

This increase in availability has led to a rise in the amount
of research in the localization field using these devices. A
great deal of articles related with localization are based on
theoretical conjectures and simulations, but rarely are these
assumptions tested on scenarios other than toy ones and areas
greater than 100×100 m2.

Being RSS based research the most popular in the past
years, it comes as no surprise that SDR receivers are widely
employed in these papers. Such examples appear in [12],
where they make use of USRP, Pluto and other high-end
receivers. The aforementioned receivers offer a great deal
of features like GPS disciplined oscillators and higher band-
widths, although their cost is higher. In [17] we see an example
of RSS based localization using the RTL-SDR although the
covered distance is no more than 100 m, thus it cannot be
considered a large scale deployment.

Another example of RSS based system is the one pro-
posed in [23]. However, this system again was validated in
simulations and on a relatively small area, and no realistic
environment was considered in that work.

With regards to TDOA localization using SDR receivers,
we have several examples in [24], [25] and [26]. However,
as it happens with RSS based methods, the proposed systems
are either focused on one specific technology, use high end

hardware or remain conceptual and do not pursue any larger
scale implementation.

Recalling KiwiSDR, the sensors employed in this project
are custom boards that are GPS synchronized but their cost
is relatively higher (around 200$) than the Raspberry Pi and
RTL-SDR combination (<100$). Another drawback is that
they can only measure frequencies from 10 kHz to 30 MHz,
relatively ”far” from technologies like LTE, DVB-T or GSM.

Another interesting case is the example of Panoradio4, an
attempt to use the low cost RTL-SDR devices to perform
geolocation with notable results. To overcome the need of
accurate time synchronization, they made use of Reference
Transmitters with known locations. In their case, they deployed
3 sensors equipped with RTL-SDR in the city of Kaiser-
slautern. They were able to localize a number of transmitters
at different frequencies and achieved notable results. One of
the main drawbacks is that experiments were only done with
a single set of sensors, and they do not perform any signal
processing, thus they could achieve a precision of around 150
m.

IV. CHALLENGES & ASSUMPTIONS

The architecture we propose in this thesis must overcome
the weak points we have observed in the related work section.
The main requirements for our system are: (i) The system
needs to be as low cost as possible, thus we will make
use of the RTL-SDR. (ii) It must make use of commodity
antennas and hardware, such as those sensors belonging to the
Electrosense network. (iii) We want the system to be GPS-free,
to reduce cost and because sensors may be placed in locations
without GPS fix, so positioning and synchronization must be
obtained with other methods or provided by other means.

In the following lines, we will describe what are the main
challenges to achieve such a system and what assumptions we
will make in this thesis.

A. SDR Imperfections

SDR receivers are susceptible to manufacturing errors,
operating temperature and local oscillator variations. These
imperfections may lead to small errors when an SDR is
commanded to obtain data at the desired center and sampling
frequencies. This error is called Local Oscillator Offset and
it is usually measured in Parts Per Million (PPM). In this
thesis we will assume that both errors in center and sampling
frequencies are similar:

∆fs
fs
≈ ∆fc

fc
≈ ϕ (1)

where fs, fc and ϕ are the sampling frequency, center fre-
quency and PPM respectively.

In Table II we show 4 popular SDR receivers and their
reported PPM limits as per the information shown in their
datasheets. Most high end receivers and the RTL-SDR incor-
porate devices such as Temperature Compensated Crystal Os-
cillator (TCXO) or GPS Disciplined Oscillator (GPSDO), that

4http://www.panoradio-sdr.de/



MASTER THESIS - YAGO LIZARRIBAR 4

0 20 40 60 80 100 120 140 160 180 200
Experiment number

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
P

M

Sensor 1
Sensor 2
Sensor 3

Fig. 2. PPM values over time

areallow the SDR frontends to capture data at the requested
parameters more precisely.

There are several tools to estimate the Local Oscillator
offset. Two of those tools are kalibrate-rtl5 and LTESS-
Track [27]. Both approaches exploit the features of specific
technologies to estimate the error in the oscillator (GSM for
the former and LTE for the latter). In this work, we utilized
LTESS-Track as our offset estimator, due to the accuracy and
the low amount of time it requires to estimate the oscillator
errors of our receivers.

Fortunately, for the RTL-SDR v3, which are the receivers
we have analyzed in this thesis, the PPM values remain
relatively stable. To show this, we took 200 LTE traces with 3
different sensors and we plot the PPM values over time. Figure
2 shows that throughout the experiments, PPM values for all
3 sensors remain constant. Given this fact, we could conclude
that we do not need to continuously estimate the oscillator
offset but we can use the same values for longer periods of
time.

B. Sensor positioning

Another important aspect for a localization system is that
sensors need to be accurately geolocated. Many commodity
hardware devices we use in daily life, such as smartphones,
already come with GPS receivers that can provide positioning
accuracies of a couple meters.

However, for our system, we will not be able to rely on
these GPS receivers to obtain the position of the sensors. In a
crowdsourced initiative like Electrosense, users are in charge
of the location of the sensor and we will rely on that. However,

5https://github.com/steve-m/kalibrate-rtl

SDR Cost Max. Bandwidth PPM Special HW

RTL-SDR v2 15-20$ 2.4 MHz ±80 -
RTL-SDR v3 15-20$ 2.4 MHz ±1 TCXO
USRP B210 1300$ 60 MHz ±0.075 GPSDO
HackRF One 300$ 20 MHz ±0.5 TCXO

TABLE II
POPULAR SDR RECEIVERS AND THEIR MAXIMUM PPM ERRORS
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Fig. 3. Data obtained with the asynchronous library of RTL-SDR

users may decide to obfuscate the actual location which may
have an impact on the overall localization accuracy.

There has been work done however, to opportunistically
exploit time information in aerial signals as it can be seen
in [28]. By intelligently exploiting these signals, the authors
were able to localize sensors in an indoor environment. This
work is out of the scope of this thesis, but it would be an
interesting approach to pursue.

C. Signal Synchronization

We have already mentioned that in either TOA or TDOA
based systems, sensors need to be synchronized. One of the
most standardized manners to synchronize the clocks is to
use the Network Time Protocol (NTP) which can achieve
accuracies of a few milliseconds over Internet. However, for
a localization system this is not enough. Given that the speed
of light is 3 · 108 m/s, a synchronization error of 1 ms would
yield:

10−3 × 3 · 108 = 300 km (2)

which is an error unacceptable for any localization system.
Some sensor networks utilize GPS as their source of syn-

chronization, which can provide accuracies at the nanosecond
scale. However, as we mentioned earlier, our system does
not have any GPS source. To solve this we propose an
approach that utilizes NTP to coordinate the sensing processes
of different sensors, and the captures data from a Reference
Transmitter (RS) and the Unknown Transmitter (US) we want
to locate. By knowing the location of the RS, we can align
the data incoming from 2 different sensors and obtain the real
difference of arrival of the unknown signal.

To achieve this, we make use of librtlsdr-2freq6, a reim-
plementation of the rtl-sdr library that allows for a center
frequency change while measuring. The reasons to use this
library is that by continously sampling data, we avoid losing
samples in between sensing processes and thus we can obtain
the actual synchronization delay between a pair of sensors.

In Figure 3 we show a trace of data obtained with the
mentioned library. In this example we collected Digital Audio

6https://github.com/DC9ST/librtlsdr-2freq
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Fig. 4. General architecture of the TDOA localization module

Broadcasting (DAB) as reference (at 195 MHz) and tuned to
LTE as our unknown signal. We collected a total of 12 million
samples, 4 million per chunk. It can be seen that no samples
are lost although we cannot assure that the converter switched
frequencies exactly at 4 million samples. To avoid errors, we
can set a guard interval and only use the ”cropped” signals to
calculate the difference of arrivals.

D. Other challenges

The challenges we mentioned above are by no means the
only ones that appear in a system like this. Another issue that
arises in a system like the one we are proposing in this thesis is
the network usage. Sensors send In-Phase and Quadrature (IQ)
samples with the RS and US at rates of around 2 Msps. At
those rates, considering each sample coming from an RTL-
SDR device, for example, contains 8 bits for each of the
complex values, one second of data can account for:

8× 2× 2 · 106 = 4MB/s (3)

which is a considerable rate for most home networks.
One last issue concerns the bandwidth of the RTL-SDR.

The maximum achievable bandwidth is of 2.4 MHz, but
many of today’s technologies have larger bandwidths, such
as LTE or DVB-T to name a few. In [29] they managed
to employ a number of RTL-SDR and reconstruct signals
with larger bandwidth but this would require more advanced
synchronization mechanisms between the sensors.

We will not analyze these issues since they would be out
of the scope of this thesis but these are interesting challenges
that will be explored in future works.

V. ARCHITECTURE

Before describing the overall architecture of the system
as shown in Figure 4, we will use these lines to provide a
brief introduction to the Electrosense infrastructure [7] [8].

In essence, the sensors consist of a standard dipole antenna,
an RTL-SDR and a Raspberry Pi (Figure 5), which the user
connects at their home or office via ethernet or wifi.

Sensors use an open source tool, es sensor7 to scan the
spectrum and can output values in 2 forms: Power Spectral
Density (PSD) or IQ. Sensors then send this scans to the
backend, that processes it and stores it in a database so that
users can see the spectrum in different parts of the world, or
decode different signals.

To coordinate the measurement campaigns, sensors com-
municate with the infrastructure via the Message Queuing
Telemetry Transport (MQTT) protocol. In these campaigns,
the type of measurement, the frequency ranges, duration
and several other parameters are specified and sent to the
corresponding sensors. Sensors are synchronized via NTP.

The localization architecture proposed in this thesis takes
into account the design of Electrosense, and divides into 2
parts, Sensor and Backend. The process starts when the user
wants to localize a transmitter in a given area, and selects a
number of sensors (for an accurate location, at least 3 sensors
are required). In the sensor side, the selected sensors would
receive the measurement campaign with the start time and the

7https://github.com/electrosense/es-sensor

Fig. 5. Electrosense sensor kit. Source: Jetvision
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two frequencies required (one as a reference and the other the
target signal’s). At the same time, sensors can use LTE signals
and the LTESS-Track tool to compute their Local Oscillator
Offset. After the given measurement time, these sensors send
a trace of IQ samples as the one seen in Figure 3 and their
corresponding Local Oscillator Offsets, measured in PPM.

For the backend, it is subdivided into several steps: Fre-
quency Offset Correction, Synchronization and TDOA Estima-
tion and Multilateration. We will use the following lines to
explain them in more detail.

A. Frequency Offset Correction

Even though the TCXO of the latest versions of the RTL-
SDR is guaranteed to be ±1 PPM, it can still have a great
influence in the measurement results as we will see in later
sections. Using the LTESS-Track tool we can estimate the
frequency offset, ϕ and correct both the center and the
sampling frequency offsets.

To correct the center frequency, fc, we must note that the
actual measured center frequency, f ′c, is:

f ′c = (1 + ϕ) · fc (4)

therefore we must perform a frequency shift of the samples of
the original signal denoted as s′[nT ′s]. Each sample is received
at time n · T ′s, where T ′s is the observed sampling period,
which can be related to the desired sampling period, Ts, as
T ′s = Ts/(1 + ϕ).

With all these we can generate the new signal, shifted to
the desired center frequency:

s′′[nT ′s] = s′[nT ′s] · e−j2π·nT
′
s·ϕfc (5)

Now that the center frequency is corrected, we can proceed
to correct the sampling frequency. For that we can resample the
data at the correct rate by performing an interpolation between
samples. Thus the obtention of the corrected signal, s[nTs] can
be regarded as changing from sampling rate nTs/(1 + ϕ) to
nTs:

s[nTs] = I(s′′[nT ′s],
nTs

1 + ϕ
, nTs) (6)

B. Synchronization and TDOA Estimation

After the signals have been corrected, the next step is to
estimate the TDOA values per each pair of sensors. To obtain
the delay between 2 signals, we generally use first the cross-
correlation function, which given 2 signals si and sj is defined
as follows:

(si ? sj)[τ ] =

N−1∑
n=0

si(nTs)sj((n+ τ)Ts) (7)

After performing the cross-correlation, to obtain the delay
τij between both signals we take the maximum value of the
resulting vector:

τij = arg max
τ

[(si ? sj)[τ ]] (8)

In this thesis, we have evaluated 3 different possibilities
to perform the cross-correlation: using the raw IQ samples
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Fig. 6. Cross-correlation done on regular vs upsampled signals (factor 10)

(iq), using the absolute value (abs) or the phase difference
(dphase). If each IQ sample is represented by α and β
respectively, the representation of each of the methods is the
following:

si,iq[nTs] = α[nTs] + jβ[nTs]

si,abs[nTs] =
√
α[nTs]2 + β[nTs]2

si,dphase[nTs] = 6 si,iq[nTs]− 6 si,iq[(n− 1)Ts]

(9)

To obtain the TDOA with the target transmitter, we first
cross-correlate the first chunk of the signal, where we have
RS (Figure 4) and obtain the delay τij,RS . By knowing the
position of the reference transmitter, pRS and the positions of
the sensors pi and pj we can compute the expected difference
of arrival, Tij,RS :

Tij,RS = ||pRS − pi|| − ||pRS − pj|| (10)

With these values and the output from the cross-correlation
of the chunks containing US, we can obtain the TDOA value
for the unknown transmitter, τij between sensors i and j:

τij = τij,US − (τij,RS − Tij,RS) (11)

One issue to consider is the fact of how much can affect an
error in 1 sample when computing the TDOA. For the RTL-
SDR, given it can sample at around 2 Msps, that would mean
that a difference of 1 sample can result in an error of:

3 · 108

2 · 106
= 150 m (12)

which can be interpreted as the approach having an uncertainty
of 150 m. One way of mitigating the uncertainty region, is
to upsample the signals by a reasonable factor and compute
the cross-correlation on the upsampled versions. Figure 6
illustrates how by upsampling the signals by a factor of 10
in this case, we can estimate the position of the peak at a sub-
sample level, and thus have more precise TDOA estimation.
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Fig. 7. How Fang’s Algorithm works with real data from KiwiSDR. On the left the 3 sensors (red) and the associated hyperbolas. On the right the region
defined by the intersections (green) after zooming

C. Multilateration

In the last component of the architecture the actual transmit-
ter positioning is performed. For this thesis we have considered
3 approaches: Linear Search, Fang’s Algorithm and Least
Squares.

The Linear Search approach consists of discretizing the
space into a grid of size M×N and computing the expected
TDOA value per each of the squares in the grid and per pair
of sensors (τmn,ij). Then, the Mean Squared Error (MSE) is
computed compared to the measured TDOA values:

emn =

N−2∑
i=0

N−1∑
j>i

(τmn,ij − τij)2 (13)

then, the square with the lowest emn is assumed to be the
transmitter location. The advantage of this method is that it is
simple to implement and can provide good results. However,
to achieve better accuracy finer discretization is needed and it
is not difficult to see that if M ∼ N , then the time complexity
is of O(N2), or in other words, grows cuadratically with the
number of elements the region is divided into.

Fang’s Algorithm is a method to obtain the intersection of 2
hyperbolas [30], for cases of 3 sensors, having 1 as a reference.
There exist several variants depending on the geometry (e.g.
planar, spherical) but for this thesis we have only implemented
the planar case. Having 3 sensors, placed in x1 = [0, 0]T ,
x2 = [b, 0]T and x3 = [x3, y3]T , and an unknown transmitter
x = [x, y]T , the equations that result are:

τ12 =
√
x2 + y2 −

√
(x− b)2 + y2 (14)

τ13 =
√
x2 + y2 −

√
(x− x3)2 + (y − y3)2 (15)

The advantage of Fang’s algorithm is that its computation
time is lower than with the Linear Search method. The main
issue with this algorithm is selecting the reference sensor, since
with each sensor, due to the fact that TDOA measurements
are not perfect, we will obtain different intersection points. To
illustrate this, we took real data from 3 sensors from KiwiSDR

and computed the intersection points using all 3 sensors as
reference. As it can be seen in Figure 7, those intersections
rarely land on the same point and thus further techniques need
to be applied to determine the correct transmitter location.

The last of the methods implemented was the Least Squares
approach. In this case we need 4 or more sensors, having one
of them acting as a reference again. The TDOA between the
reference sensor 1 and a sensor j:

τ1j = d1 − dj = d1 −
√

(xj − xt)2 + (yj − yt)2 (16)

Operating on this equation we can end up with:

2 · (τ1j · d1 + (x1 − xj) · xt + (y1 − yj) · yt)
= τ21j + x21 + y21 − x2j − y2j

(17)

we can treat d1, the distance from the reference sensor to the
transmitter, as another variable and then we will have defined
an over determined system with the form A · x = b. We can
then solve it with the Least Squares approach:

x = (ATA)−1ATb (18)

As with Fang’s Algorithm, this method is more computa-
tionally efficient than Linear Search, but a reference sensor
needs to be decided. Another issue with this approach is that
linearizing d1 can lead to erroneous results, thus further checks
are required.

VI. EVALUATION

To perform the evaluation of the system, we did 3 sets of ex-
periments. The first were the feasibility studies, and we looked
at how frequency offset correction, upsampling and different
signals could affect the performance of the system. In the
second set, we evaluated the real life applicability of different
signals in our localization architecture. Last, we observed the
performance of the different multilateration algorithms using
real data from KiwiSDR.
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Fig. 8. Feasibility study results

A. Feasibility Studies

For these part of the evaluation, we used 3 RTL-SDR and
collected samples in 5 different technologies: LTE, GSM,
DVB-T, and FM radio. For each, receiver we collected 200
traces (as the ones in Figure 3). For each of the traces, we also
collected 2 seconds of LTE traces to calculate the oscillator
offsets. The experiment setup is summarized in Table III.

To collect data, we connected 3 RTL-SDR devices to an
active splitter, and this to an antenna and an external power
supply (Figure 9). The 3 SDR devices when then connected
to the same master computer and the data collection processes
where synchronized with tmux8.

Measuring with this setup we can guarantee that the signal
received is the same for all 3 sensors and the differences are

8https://github.com/tmux/tmux/wiki

RS fRS (MHz) US fUS (MHz) Bandwidth (MHz)

LTE 806 LTE 806 2
GSM 938.8 LTE 806 0.2

DVB-T 562 LTE 806 2
FM 98.8 LTE 806 0.2

TABLE III
EXPERIMENT SETUP

due to their internal clock offsets. After data was collected, we
analyzed all the traces with MATLAB and show the different
results in Figure 8. Since the antenna is the same for all
sensors, the observed differences should be 0. Any value
different than that might be caused due to the offset between
sensors not being properly corrected or that the signal is too
noisy to be suitable to be employed as a reference signal.

1) Effects of Offset correction and Upsampling: Figures
8a and 8b show the results of the feasibility studies using
GSM and DVB-T respectively in four scenarios: when no
offset correction is made (Original), when we use the offset
in both chunks that contain RS and average the delay (RS
Mean), when we correct the offset with LTESS-Track (FOC)
and when we correct offset and upsamle the signals (FOC +
Upsampling).

In this plots is already visible that even though the Local
Oscillator errors are relatively small (in our experiments we
never saw values above 1 PPM, which matches the specifica-
tion for the RTL-SDR), they can have a great influence in the
TDOA values, and thus these errors must be corrected.

One approach to correct these errors is to assume the offset
between 2 sensors is linear, which is a reasonable assumption
since their oscillator errors are stable as we saw in Figure 2. By
averaging the offset between both RS chunks and substracting
it from the delay obtained with the US chunk, we can improve
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Fig. 9. Measurement setup for feasibility studies

the results notably in all cases.
If instead we perform the offset correction, we can reduce

the delays obtained in almost all experiments to 0. However, at
a sampling rate of 2 Msps we would still have an uncertainty
region, that for this experiments we considered it to be of
150 m. To observe were the actual peaks of the cross-
correlation were happening, we upsampled the signals with
different factors (in these figures we used a factor of 10). When
upsampling, we observe that more than half of the results still
yield a 0 delay in samples (which can be translated into an
uncertainty region of 15 m).

2) Different Correlation methods: Figure 8c compares
the 3 different correlation methods explained in Section V:
dphase, abs and iq. In this plot we are showing the results
using a DAB signal, but results were very similar with other
technologies. From this figure we can clearly see that abs
and dphase have similar performances (although the former
slightly better), whereas iq method performed poorly on all
the analyzed technologies.

3) Comparison of technologies: In the last plot, Figure
8d, we compare the performance of all the technologies
analyzed. From this results we can see that LTE offers the best
performance and FM signals the worst. One of the reasons for
this difference in performance is that the former is a digital
signal where as FM radio signals are analog. The fact of having
discrete energy levels might probably help when correlating
the signals.

Another aspect to notice is that the lower the frequency,
the worse the results get (comparing LTE and DVB-T). This
might be due the fact that DVB-T signals usually have greater
coverage than LTE and thus the likelihood of multipath or
fading happening is greater with DVB-T signals.

Last, one of the reasons that could explain why GSM
performs slightly worse is due to its lower bandwidth. GSM
signals have a bandwidth of 200 kHz, which is 10 times less
information than what we can obtain with the RTL-SDR, thus
there are less features on the signal for the cross-correlation
to rely on, and more errors can occur.

B. Signal Evaluation

For a localization system to work, it is necessary that all
the sensors involved in the task see the same signal. Lower
frequency signals like DVB-T or DAB have greater coverage,

(a) San Sebastian (Basque Country, Spain)

(b) Alcorcon (Community of Madrid, Spain)

Fig. 10. Trips in the selected cities to collect data on LTE cells

thus it is more likely that sensors in the same area see the same
signal. And as it can be seen from the previous studies, they
offer similar performance to LTE since they are both digital
as well.

One of the drawbacks of DAB, at least in Spain, is that
currently there are only 2 cities with DAB transmitters: Madrid
and Barcelona. Therefore its usage would be somewhat lim-
ited. Other countries, on the contrary, have denser deployments
and utilizing this technology might be feasible.

LTE signals are interesting as well, since they performed
the best in the previous set of experiments, and in addition
to that, they can be used to correct the frequency offset of
the sensors. However, the coverage of an LTE cell is much
smaller thus dense deployments would be needed. To prove
this intuition, we developed an Android app that outputs the
current LTE Cell ID the phone is connected to as well as the
GPS coordinates of the measurement. 2 trips were taken in the
cities of San Sebastian and Alcorcon, with an area covered of
4.4 and 6 km2 respectively, as shown in Figure 10.

To gain insigh on the results of these experiments, we
aggregated the measurements by Cell ID and computed the
maximum distance that could be observed between 2 measure-
ments that shared the same Cell ID. The resulting cumulative
distribution function is shown in Figure 11. For the case of
San Sebastian, up to 64 different Cell IDS could be observed,
whereas in the case of Alcorcon up to 20. The average
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Fig. 11. ECDF for detected cells

maximum distance between measurements with same Cell ID
was 236.6 m and 560.6 m respectively, but more than 50% of
the cells fall in the range of less than 200 m for the case of
San Sebastian and 500 m for Alcorcon.

What these results prove is that the intuition of the lower
coverage of LTE was indeed correct, and the main conclusion
that can be extracted is that to completely rely on LTE as a
reference signal, an extremely dense deployment of sensors
would be needed.

It is also important to note, that these results do not compro-
mise the use of LTE signals to estimate the Local Oscillator
Offset of the SDR receivers. For this case, each sensor can
use any signal to estimate its own internal parameters and
no interaction with other sensors is needed, thus the methods
remains perfectly valid even though sensors use different LTE
signals to calculate their clock offsets.

C. Multilateration Strategies

The last set of evaluations concerned the comparison of
the different multilateration techniques aforementioned. And
before real life deployments, we explored the use of real
data like the one KiwiSDR provides. This platform offers a
localization extension and allows users to download data for
their own experiments. The sensors from KiwiSDR scan the
spectrum from 0 to 30 MHz, thus they capture High Frequency
(HF) bands. At these frequencies, transmitters can be seen
from distances that range the hundreds of kilometers.

The data that comes from KiwiSDR is sampled at a fre-
quency of 12 kHz and is GPS timestamped during 30 seconds,
therefore no synchronization signal is needed. Data for each

Header Kiwi Data DataKiwi ...

Fig. 12. KiwiSDR data structure
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Fig. 13. Drift in delay caused by offsets in KiwiSDR sensors

sensor is provided in WAV format and it consists of: 1) A
general header with the location of the sensor and several
parameters of the file. 2) Data chunks with 512 IQ samples.
Preceeding each chunk there is a small header that contains
the GPS timestamp of when the first sample of the chunk was
received. Figure 12 shows a visual representation of the data
structure.

Even though sensors are GPS synchronized, between sen-
sors there is still a drift that affects the TDOA estimation
between sensors. As an example, we divided the data incoming
from 2 sensors tuned to the same transmitter into 20 different
chunks and performed the cross-correlation between them.
Figure 13 shows how the delay increases in a linear manner
and also how upsampling the signal is able to capture this
effect better. To correct this offset we added the average delay
in each of the chunks to the delay obtained by cross-correlating
in that chunk.

To compare the multilateration strategies we selected 3
sensors in Europe and a transmitter in Frankfurt, DCF77, a
longwave time signal operating at 77.5 kHZ, with a bandwidth
of 1 kHz and Amplitude Modulated. The location of the
sensors and transmitter is shown in Figure 14a. We collected
30 traces per sensor and compared the Linear Search and the
Fang’s Algorithm results, summarizing the results in Figure
14b.

For Linear Search, most results are at 1 km from the actual
position of the transmitter, independent of the correlation type.
For Fang’s Algorithm approach, the mean for abs correlation
is 14.7 km and for iq correlation is 11.56 km. We also
performed the tests with dphase but results were inaccurate
since the signal is Amplitude Modulated and the phase did not
carry information, therefore we have not included the results
in this comparison. Even though the errors are in the order
of km, since the distances involved are much larger, they are
acceptable errors.

One of the reasons for Linear Search outperforming Fang’s
algorithm approach is that for the latter we did a conversion
from geodetic coordinates to a planar space, whereas when
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Fig. 14. Selected KiwiSDR sensors and obtained results on localization

doing the Linear Search we can compute the distances on the
ellipsoid directly.

VII. CONCLUSIONS AND FUTURE WORK

In this thesis we have presented an architecture for a
GPS-free transmitter localization system using low cost SDR
receivers and offered some preliminary evaluations on the dif-
ferent aspects of it. These results indicate that a system of low-
cost sensors may be feasible and capable of obtaining notable
results in more real scenarios. One of the first conclusions is
that correcting the sampling and frequency offsets improves
notably the performance, as well as upsampling the signals.
We observed as well that digital signals perform better than
analog ones. It is also worth mentioning that the sphericity of
the Earth might impact the accuracy of the localization, thus
algorithms should be able to account for this.

Future works will look for real deployments utilizing the
Electrosense hardware, testing the architecture as a whole. We
will also look into modifications of the algorithms to account
for Earth’s geometry as well as newer and more accurate
algorithms such as Gauss-Newton approaches [31].
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